A note on the cyclical edge-connectivity of fullerene graphs

Zhongbin Qi and Heping Zhang*
School of Mathematics and Statistics, Lanzhou University, Lanzhou, Gansu, 730000, Peoples Republic of China
E-mail: zhanghp@lzu.edu.cn

Received 3 June 2006; revised 26 June 2006

Abstract

A fullerene graph is a 3-regular (cubic) and 3-connected spherical graph that has exactly 12 pentagonal faces and other hexagonal faces. The cyclical edge-connectivity of a graph G is the maximum integer k such that G cannot be separated into two components, each containing a cycle, by deletion of fewer than k edges. Došlić proved that the cyclical edge-connectivity of every fullerene graph is equal to 5. By using Euler's formula, we give a simplified proof, mending a small oversight in Došlić's proof. Further, it is proved that the cyclical connectivity of every fullerene graph is also equal to 5 .

KEY WORDS: fullerene graph, cyclical edge-connectivity, cyclical connectivity

1. Introduction

A fullerene graph, the molecular graph of a spherical carbon cluster, is a 3-regular (cubic) and 3-connected plane graph (or spherical map) that has exactly 12 faces of size 5 and other faces of size 6 . In a series of articles [2-5, 12], it has been shown that fullerene graphs have certain structural properties related to matching theory, such as bicriticality, 2-extendability, etc.

A graph G is said to be bicritical if $G-u-v$ has a perfect matching for every pair of distinct vertices u and v. A connected graph G with at least $2 k+2$ vertices is said to be k-extendable if it contains a matching of size k and every such matching is contained in a perfect matching. A graph G is cyclically k-edge connected if at least k edges must be removed to disconnect G into two components that each contains a cycle. The cyclical edge-connectivity of G, denoted by $c \lambda(G)$, is the maximum integer k such that G is cyclically k-edge connected $[6,7]$. There is a relation between bicriticality and the cyclic edge-connectivity as follows (See Ex. 5.5.21 in [9]).

[^0]Propositon 1. For a k-regular non-bipartite graph $G(k \geqslant 3)$, if G is cyclically $(k+1)$-edge connected and has even number of vertices, then G is bicritical.

From proposition 1, Došlić [2] showed that all fullerene graphs are bicritical by giving the following lower bound on cyclical edge-connectivity of fullerene graphs:

Theorem 2. [2]. Let G be a fullerene graph. Then $c \lambda(G) \geqslant 4$.
From this result, the 2-extendability of all fullerene graphs was discovered by Zhang and Zhang [12] based on the result of Ref. 8: If G is a 3-connected cubic planar graph which is cyclically 4-edge connected and has no face of size 4 , then G is 2-extendable.

Furthermore, combining Sashs' result that the cyclical edge-connectivity of every 2-edge connected cubic graph is no more than 5 [11], it was obtained that for every fullerene graph $G, c \lambda(G) \leqslant 5$.

Later, Došlić [5] determined the value of $c \lambda$ for all fullerene graphs, solving the problem proposed by Zhang and Zhang in [12]:

Theorem 3. [5]. Let G be a fullerene graph. Then $c \lambda(G)=5$.
In Došlić's proof of this theorem seven cases were enumerated in figure 5 in [5]. But two additional cases that may happen were not listed (See figure 1).

In this note we avoid such an enumeration and give a simplified proof to theorem 3 by mainly applying Euler's formula. For a graph G, we denote the vertex set and edge set of G by $V(G)$ and $E(G)$, respectively. For any $V^{\prime} \subseteq$ $V(G)$ and $E^{\prime} \subseteq E(G)$, the induced subgraphs by V^{\prime} and by E^{\prime} are denoted by $G\left[V^{\prime}\right]$ and $G\left[E^{\prime}\right]$, respectively. For the sake of convenience, we call an edge cut of a connected graph G cyclical edge cut if the deletion of it separates G into two components, each containing a cycle. The other terminology and notation in graph theory used but unexplained in this note are standard and can be found in $[1,9]$.

First we give the following lemma as a preparation for our proof to theorem 3.

Lemma 4. Let G be a 3-regular, 3-connected plane graph with $c \lambda(G)=k$. Then for every cyclical edge cut $E_{0}=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$, there exist two cycles C^{\prime} and $C^{\prime \prime}$ on distinct components of $G-E_{0}$, respectively, such that every edge e_{i} of E_{0} has one endpoint on C^{\prime} and the other one on $C^{\prime \prime}$. Furthermore, E_{0} is a matching of G.

Proof. Let $E_{0}=\left\{e_{1}, e_{2}, \ldots, e_{k}\right\}$ be a cyclical edge cut of G. Then E_{0} separates G into two components G^{\prime} and $G^{\prime \prime}$ that each contains a cycle, denoted by C_{1} and C_{2}, respectively. We may suppose that the outer face of G is exactly the

Figure 1. Two possible cases unconsidered in [5].
outer face of $G^{\prime \prime}$. Thus G^{\prime} must lie in some inner face F_{0} of $G^{\prime \prime}$. We denote the boundaries of F_{0} and the outer face of G^{\prime} by $C^{\prime \prime}$ and C^{\prime}, respectively.

We assert that G^{\prime} and $G^{\prime \prime}$ are both 2 -connected. If G^{\prime} is not 2 -connected, then there is a cut vertex v of G^{\prime}. Since $d_{G^{\prime}}(v) \leqslant 3$, there must exist a cut edge e of G^{\prime} incident with v. Let us denote the two components of $G^{\prime}-e$ by G_{1}^{\prime} and G_{2}^{\prime}, respectively. Then the cycle C_{1} must be contained in G_{1}^{\prime} or in G_{2}^{\prime}, say G_{1}^{\prime}. On the other hand, there must be at least two edges of E_{0} such that each of them has one endpoint in G_{2}^{\prime}. Otherwise we would choose fewer than three vertices the deletion of which separates G into at least two components, contradicting the 3connectivity of G. So the number of edges of E_{0} with one endpoint in G_{1}^{\prime} is at most $k-2$. Thus these edges together with e form an edge cut E_{0}^{\prime} with size of at most $k-1$ the deletion of which separates G into two components, G_{1}^{\prime} and $G-G_{1}^{\prime}$, where G_{1}^{\prime} contains C_{1} and $G-G_{1}^{\prime}$ contains C_{2}. Hence, E_{0}^{\prime} is a cyclical edge cut of G and $c \lambda(G) \leqslant k-1$, a contradiction. So G^{\prime} is 2-connected. Similarly it can be shown that $G^{\prime \prime}$ is 2 -connected.

Since every face of a 2 -connected plane graph is bounded by a cycle (cf. proposition 4.2 .5 in [1]), both C^{\prime} and $C^{\prime \prime}$ are cycles. Then by the planarity of G every e_{i} of E_{0} has one endpoint on C^{\prime} and the other on $C^{\prime \prime}$. Since G is 3-regular, each pair of edges of E_{0} have no endpoints in common.

Proof of theorem 3. Since $4 \leqslant c \lambda(G) \leqslant 5$, it is sufficient to prove that $c \lambda(G) \neq 4$. Suppose, to the contrary, that $c \lambda(G)=4$. Among all cyclical edge cuts of G with size 4 , we choose one, denoted by $E_{0}:=\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, such that one of the two components of $G-E_{0}$, say G^{\prime}, has the minimum number of vertices. The other component of $G-E_{0}$ is denoted by $G^{\prime \prime}$. Then by lemma 4 there exist two cycles C^{\prime} and $C^{\prime \prime}$ on G^{\prime} and $G^{\prime \prime}$, respectively, such that every edge $e_{i}(i=1,2,3,4)$ has one endpoint v_{i}^{\prime} on C^{\prime} and the other endpoint $v_{i}^{\prime \prime}$ on $C^{\prime \prime}$, and E_{0} is a matching of G. From the proof of lemma 4 we can suppose that G^{\prime} lies in the interior of $C^{\prime \prime}$ (See figure 2).

Let us denote the numbers of the additional vertices on C^{\prime} and $C^{\prime \prime}$ by k^{\prime} and $k^{\prime \prime}$, respectively. Then we have that $k^{\prime} \geqslant 1$ and $k^{\prime \prime} \geqslant 1$ since G has no quadrilateral faces.

Figure 2. The cycles C^{\prime} and $C^{\prime \prime}$ and the edges connecting them.
Claim. $k^{\prime}+k^{\prime \prime} \leqslant 8$.
In fact, if there are more than eight additional vertices on C^{\prime} and $C^{\prime \prime}$, then there would be at least three additional vertices on one of the boundaries of the four faces of G between C^{\prime} and $C^{\prime \prime}$, resulting in such a face with size more than 6 , a contradiction.

Now let us consider the subgraph G^{\prime} and denote by $\nu^{\prime}, \epsilon^{\prime}$ and f^{\prime} the numbers of vertices, edges and interior faces of G^{\prime}, respectively. Further let r be the number of vertices in the interior of C^{\prime}. Then we have

$$
\begin{equation*}
v^{\prime}=k^{\prime}+r+4 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\epsilon^{\prime}=\frac{8+3 k^{\prime}+3 r}{2} \tag{2}
\end{equation*}
$$

Substituting Equations (1) and (2) into Euler's formula $v^{\prime}-\epsilon^{\prime}+f^{\prime}=1$, we have

$$
\begin{equation*}
f^{\prime}=\epsilon^{\prime}-v^{\prime}+1=\frac{k^{\prime}+r+2}{2} . \tag{3}
\end{equation*}
$$

Let m and n denote the numbers of pentagons and the hexagons in the interior of C^{\prime}, respectively. Then we have

$$
\begin{equation*}
f^{\prime}=m+n \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\epsilon^{\prime}=\frac{5 m+6 n+k^{\prime}+4}{2} \tag{5}
\end{equation*}
$$

Combining Equations 2-5, we have that

$$
\begin{aligned}
& m+n=\frac{1}{2}\left(k^{\prime}+r+2\right) \\
& 5 m+6 n=4+2 k^{\prime}+3 r
\end{aligned}
$$

From the above expressions, we obtain

$$
m=k^{\prime}+2
$$

So $f^{\prime}=m+n \geqslant m=k^{\prime}+2$; that is, there are at least $k^{\prime}+2$ faces of G in the interior of C^{\prime}. But because of the 3-regularity and the 3-connectivity of G, from each of these k^{\prime} additional vertices on C^{\prime} there is exactly one edge towards the interior of C^{\prime}. So in the interior of C^{\prime} there must exist at least one face F of G such that the boundary of F is disjoint with C^{\prime}. Hence, the set, denoted by E^{\prime}, of edges emitted from the k^{\prime} additional vertices on C^{\prime} towards the interior of C^{\prime} is a cyclical edge cut of G with size k^{\prime} the deletion of which separates G into two components, one of them, denoted by G^{*}, containing the face F and the other of them containing C^{\prime}.

Then $\left|E^{\prime}\right|=k^{\prime} \geqslant 4$ since $c \lambda(G) \geqslant 4$. Applying the same reason on $C^{\prime \prime}$, we also have that $k^{\prime \prime} \geqslant 4$. Then from the above claim that $k^{\prime}+k^{\prime \prime} \leqslant 8$, we have that $k^{\prime}=k^{\prime \prime}=4$. So the size of the cyclical edge cut E^{\prime} is 4 . But now the component G^{*} of $G-E^{\prime}$ has fewer vertices than G^{\prime}, contradicting our choice that G^{\prime} has the minimum number of vertices. Hence $c \lambda(G)=5$.

By using the cyclical 5-edge-connectivity of fullerene graphs, we now determine their cyclical connectivity. A graph G is cyclically k-connected [10] if whenever we can express G as $G=G_{1} \cup G_{2}$, where $E\left(G_{1}\right) \cap E\left(G_{2}\right)=\varnothing$ and G_{1} and G_{2} both contain cycles, we must have $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right| \geqslant k$. The maximum integer k (if exist) such that G is cyclically k-connected is said to be the cyclical connectivity of G, denoted by $с \kappa(G)$.

For every fullerene graph $G, c \kappa(G) \leqslant 5$. In fact, let us take a pentagon in G as G_{1} and take $G_{2}=G-E\left(G_{1}\right)$. Clearly, both G_{1} and G_{2} contain cycles, $G=G_{1} \cup G_{2}, E\left(G_{1}\right) \cap E\left(G_{2}\right)=\varnothing$ and $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right|=5$.

Theorem 5. Let G be a fullerene graph. Then $c \kappa(G)=5$.
Proof. Because $c \kappa(G) \leqslant 5$, it needs only to prove that equality holds. Suppose, to the contrary, that $c \kappa(G)<5$. Then there would exist a pair of subgraphs G_{1} and G_{2} of G such that G_{1} and G_{2} both contain cycles, $G=G_{1} \cup G_{2}$ and $E\left(G_{1}\right) \cap$ $E\left(G_{2}\right)=\varnothing$, but $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right| \leqslant 4$. Among all of such pairs of subgraphs of G, we select a pair of G_{1} and G_{2} such that $X:=V\left(G_{1}\right) \cap V\left(G_{2}\right)$ has as few vertices as possible. Obviously, $|X| \geqslant 3$ since G is 3-connected.

Since G is 3-regular and $E\left(G_{1}\right) \cap E\left(G_{2}\right)=\varnothing$, every vertex $v \in X$ is incident with two edges in one of G_{1} and G_{2}, and one edge (a pendant edge) in the other one. Otherwise, v would be an isolated vertex of G_{1} or G_{2}, say G_{1}. Let $G_{1}^{\prime}=G_{1}-v$. Then $G=G_{1}^{\prime} \cup G_{2}, E\left(G_{1}^{\prime}\right) \cap E\left(G_{2}\right)=\varnothing$ and G_{1}^{\prime} and G_{2} both contain cycles, but $\left|V\left(G_{1}^{\prime}\right) \cap V\left(G_{2}\right)\right|<|X|$, contradicting the selection of G_{1} and G_{2}. Now let E_{0} consist of such pendant edges of G_{1} or G_{2} each of which is incident with a vertex of X. Then $\left|E_{0}\right| \leqslant|X| \leqslant 4$ and the deletion of E_{0} does not destroy
the cycles in G_{1} and G_{2}. On the other hand, let $V_{1}^{\prime}=V\left(G_{1}\right) \backslash\left\{v \in X \mid d_{G_{2}}(v)=2\right\}$ and $V_{2}^{\prime}=V\left(G_{2}\right) \backslash\left\{v \in X \mid d_{G_{1}}(v)=2\right\}$. Then $V(G)=V_{1}^{\prime} \cup V_{2}^{\prime}$ and $V_{1}^{\prime} \cap V_{2}^{\prime}=\varnothing$. Further, it can be seen that every edge between V_{1}^{\prime} and V_{2}^{\prime} must belong to E_{0}. In fact, given any edge e with one endpoint v_{1} in V_{1}^{\prime} and the other one v_{2} in V_{2}^{\prime}. Without lose of generality, suppose that $e \in E\left(G_{1}\right)$. Then $d_{G_{1}}\left(v_{2}\right)=1$ and $v_{2} \in X$, that is, e is a pendant edge of G_{1} with an endpoint in X. So by the definition of E_{0}, e belongs to E_{0}. Hence, E_{0} is an edge cut of G. So there must exist a subset E_{0}^{\prime} of E_{0} such that E_{0}^{\prime} is a cyclical edge cut of G with size at most 4. This contradicts the result that $c \lambda(G)=5$, and the proof is thus finished.

Došlić in [3] ever gave an alternative definition on cyclical connectivity: a graph G is cyclically k-connected if it cannot be separated into components of which at least two have cycles, by removing fewer than k vertices. The greatest integer k (if exist) such that G is cyclically k-connected is called Došlić's cyclical connectivity of G, denoted by $c \kappa^{\prime}(G)$.

Došlić showed that $c \kappa^{\prime}(G) \geqslant 4$ for every fullerene graph G (See Corollary 13 [3]). For a general graph G, here we give a relation between $c \kappa(G)$ and $c \kappa^{\prime}(G)$.

Theorem 6. $c \kappa(G) \leqslant c \kappa^{\prime}(G)$.
Proof. If there is no subset of $V(G)$ the deletion of which separates G into components of which at least two have cycles, it is trivial; Otherwise, let us choose a subset X of $V(G)$ with size $c \kappa^{\prime}(G)$ such that $G-X$ is not connected and at least two components of $G-X$, say G^{\prime} and $G^{\prime \prime}$, respectively, contain cycles. Let $G_{1}:=G\left[V\left(G^{\prime}\right) \cup X\right]$ and $G_{2}:=G\left[V \backslash V\left(G^{\prime}\right)\right]-E(G[X])$. Then we have that $G=G_{1} \cup G_{2}, E\left(G_{1}\right) \cap E\left(G_{2}\right)=\varnothing$, both of G_{1} and G_{2} have cycles and $V\left(G_{1}\right) \cap V\left(G_{2}\right)=X$. So $с \kappa(G) \leqslant|X|$, i.e., $с \kappa(G) \leqslant c \kappa^{\prime}(G)$.

Equation in theorem 6 does not necessarily hold. For example, in figure 3 the graph G is the union of the graph G_{1} and G_{2}, where $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\{x, y\}$. It is seen that $c \kappa(G)=2$. But there is no any subset of $V(G)$ whose removal from G can separate G into components of which at least two have cycles.

For fullerene graphs, however, we have
Corollary 7. For every fullerene graph $G, c \kappa(G)=c \kappa^{\prime}(G)=5$.

Proof. By theorems 5 and 6 , it is sufficient to show that $c \kappa^{\prime}(G) \leqslant 5$. Take a pentagon H in G and let X be the subset of $V(G)$ consisting of the five vertices of $G-V(H)$ each of which is adjacent with a vertex on H. Then the subgraph $G-X$ of G has two components H and $G-X \cup V(H)$, both of them containing cycles. So $c \kappa^{\prime}(G) \leqslant|X|=5$.

Figure 3. Graph G with two subgraphs G_{1} and G_{2}.

Acknowledgement

This work is supported by NSFC (10471058) and TRAPOYT.

References

[1] R. Diestel, Graph Theory (Springer, New York, 1997).
[2] T. Došlić, J. Math. Chem. 24 (1998) 359-364.
[3] T. Došlić, J. Math. Chem. 31 (2002) 187-195.
[4] T. Došlić, Croat. Chem. Acta 75 (2002) 869-879.
[5] T. Došlić, J. Math. Chem. 33 (2003) 103-111.
[6] H. Fleischner and B. Jackson, Ann. Discrete Math. 41 (1989) 171-178.
[7] D. A. Holton and D. Lou, Discrete Math. 112 (1993) 139-150.
[8] D. A. Holton and M. D. Plummer, 2-extendability in 3-polytopes, in: A. Hajnal, L. Lovász and V.T. Sós (eds.) Combinatorics, Eger, Hungary, 1987, Colloq. Math. Soc. J. Bolyai, vol. 52 (Akadémial Kiadó, Budapest, 1988) pp 281-300.
[9] L. Lovász and M. D. Plummer, Matching Theory, Ann Discrete Matheatics, vol. 29 (North-Holland, Amsterdam, The Netherlands, 1986).
[10] W. McCuaig, J. Combin. Theory Ser. B 56 (1992) 16-44.
[11] M. D. Plummer, Conger. Numerantium 116 (1996) 3-32.
[12] H. Zhang and F. Zhang, J. Math. Chem. 30 (2001) 343-347.

[^0]: *Corresponding author.

