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A fullerene graph is a 3-regular (cubic) and 3-connected spherical graph that has
exactly 12 pentagonal faces and other hexagonal faces. The cyclical edge-connectivity
of a graph G is the maximum integer k such that G cannot be separated into two com-
ponents, each containing a cycle, by deletion of fewer than k edges. Došlić proved that
the cyclical edge-connectivity of every fullerene graph is equal to 5. By using Euler’s for-
mula, we give a simplified proof, mending a small oversight in Došlić’s proof. Further,
it is proved that the cyclical connectivity of every fullerene graph is also equal to 5.
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1. Introduction

A fullerene graph, the molecular graph of a spherical carbon cluster, is a
3-regular (cubic) and 3-connected plane graph (or spherical map) that has
exactly 12 faces of size 5 and other faces of size 6. In a series of articles [2–5, 12],
it has been shown that fullerene graphs have certain structural properties related
to matching theory, such as bicriticality, 2-extendability, etc.

A graph G is said to be bicritical if G − u − v has a perfect matching for
every pair of distinct vertices u and v. A connected graph G with at least 2k +2
vertices is said to be k-extendable if it contains a matching of size k and every
such matching is contained in a perfect matching. A graph G is cyclically k-edge
connected if at least k edges must be removed to disconnect G into two com-
ponents that each contains a cycle. The cyclical edge-connectivity of G, denoted
by cλ(G), is the maximum integer k such that G is cyclically k-edge connected
[6, 7]. There is a relation between bicriticality and the cyclic edge-connectivity as
follows (See Ex. 5.5.21 in [9]).
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Propositon 1. For a k-regular non-bipartite graph G (k � 3), if G is cyclically
(k + 1)-edge connected and has even number of vertices, then G is bicritical.

From proposition 1, Došlić [2] showed that all fullerene graphs are bicritical by
giving the following lower bound on cyclical edge-connectivity of fullerene graphs:

Theorem 2. [2]. Let G be a fullerene graph. Then cλ(G) � 4.

From this result, the 2-extendability of all fullerene graphs was discovered
by Zhang and Zhang [12] based on the result of Ref. 8: If G is a 3-connected
cubic planar graph which is cyclically 4-edge connected and has no face of size
4, then G is 2-extendable.

Furthermore, combining Sashs’ result that the cyclical edge-connectivity of
every 2-edge connected cubic graph is no more than 5 [11], it was obtained that
for every fullerene graph G, cλ(G) � 5.

Later, Došlić [5] determined the value of cλ for all fullerene graphs, solving
the problem proposed by Zhang and Zhang in [12]:

Theorem 3. [5]. Let G be a fullerene graph. Then cλ(G) = 5.

In Došlić’s proof of this theorem seven cases were enumerated in figure 5
in [5]. But two additional cases that may happen were not listed (See figure 1).

In this note we avoid such an enumeration and give a simplified proof to
theorem 3 by mainly applying Euler’s formula. For a graph G, we denote the
vertex set and edge set of G by V (G) and E(G), respectively. For any V ′ ⊆
V (G) and E ′ ⊆ E(G), the induced subgraphs by V ′ and by E ′ are denoted by
G[V ′] and G[E ′], respectively. For the sake of convenience, we call an edge cut
of a connected graph G cyclical edge cut if the deletion of it separates G into
two components, each containing a cycle. The other terminology and notation in
graph theory used but unexplained in this note are standard and can be found
in [1, 9].

First we give the following lemma as a preparation for our proof to
theorem 3.

Lemma 4. Let G be a 3-regular, 3-connected plane graph with cλ(G) = k. Then
for every cyclical edge cut E0 = {e1, e2, . . . , ek}, there exist two cycles C ′ and C ′′
on distinct components of G − E0, respectively, such that every edge ei of E0 has
one endpoint on C ′ and the other one on C ′′. Furthermore, E0 is a matching of
G.

Proof. Let E0 = {e1, e2, . . . , ek} be a cyclical edge cut of G. Then E0 sepa-
rates G into two components G ′ and G ′′ that each contains a cycle, denoted by
C1 and C2, respectively. We may suppose that the outer face of G is exactly the
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Figure 1. Two possible cases unconsidered in [5].

outer face of G ′′. Thus G ′ must lie in some inner face F0 of G ′′. We denote the
boundaries of F0 and the outer face of G ′ by C ′′ and C ′, respectively.

We assert that G ′ and G ′′ are both 2-connected. If G ′ is not 2-connected,
then there is a cut vertex v of G ′. Since dG ′(v) � 3, there must exist a cut edge
e of G ′ incident with v. Let us denote the two components of G ′ − e by G ′

1 and
G ′

2, respectively. Then the cycle C1 must be contained in G ′
1 or in G ′

2, say G ′
1. On

the other hand, there must be at least two edges of E0 such that each of them
has one endpoint in G ′

2. Otherwise we would choose fewer than three vertices the
deletion of which separates G into at least two components, contradicting the 3-
connectivity of G. So the number of edges of E0 with one endpoint in G ′

1 is at
most k − 2. Thus these edges together with e form an edge cut E ′

0 with size of
at most k − 1 the deletion of which separates G into two components, G ′

1 and
G − G ′

1, where G ′
1 contains C1 and G − G ′

1 contains C2. Hence, E ′
0 is a cyclical

edge cut of G and cλ(G) � k−1, a contradiction. So G ′ is 2-connected. Similarly
it can be shown that G ′′ is 2-connected.

Since every face of a 2-connected plane graph is bounded by a cycle
(cf. proposition 4.2.5 in [1]), both C ′ and C ′′ are cycles. Then by the planarity
of G every ei of E0 has one endpoint on C ′ and the other on C ′′. Since G is
3-regular, each pair of edges of E0 have no endpoints in common.

Proof of theorem 3. Since 4 � cλ(G) � 5, it is sufficient to prove that cλ(G) �= 4.
Suppose, to the contrary, that cλ(G) = 4. Among all cyclical edge cuts of G with
size 4, we choose one, denoted by E0 := {e1, e2, e3, e4}, such that one of the two
components of G − E0, say G ′, has the minimum number of vertices. The other
component of G − E0 is denoted by G ′′. Then by lemma 4 there exist two cycles
C ′ and C ′′ on G ′ and G ′′, respectively, such that every edge ei (i = 1, 2, 3, 4) has
one endpoint v′

i on C ′ and the other endpoint v′′
i on C ′′, and E0 is a matching

of G. From the proof of lemma 4 we can suppose that G ′ lies in the interior of
C ′′ (See figure 2).

Let us denote the numbers of the additional vertices on C ′ and C ′′ by k′
and k′′, respectively. Then we have that k′ � 1 and k′′ � 1 since G has no
quadrilateral faces.
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Figure 2. The cycles C ′ and C ′′ and the edges connecting them.

Claim. k′ + k′′ � 8.
In fact, if there are more than eight additional vertices on C ′ and C ′′, then

there would be at least three additional vertices on one of the boundaries of the
four faces of G between C ′ and C ′′, resulting in such a face with size more than
6, a contradiction.

Now let us consider the subgraph G ′ and denote by ν′, ε′ and f ′ the num-
bers of vertices, edges and interior faces of G ′, respectively. Further let r be the
number of vertices in the interior of C ′. Then we have

ν′ = k′ + r + 4 (1)

and

ε′ = 8 + 3k′ + 3r

2
. (2)

Substituting Equations (1) and (2) into Euler’s formula ν′ − ε′ + f ′ = 1, we have

f ′ = ε′ − ν′ + 1 = k′ + r + 2
2

. (3)

Let m and n denote the numbers of pentagons and the hexagons in the inte-
rior of C ′, respectively. Then we have

f ′ = m + n (4)

and

ε′ = 5m + 6n + k′ + 4
2

. (5)

Combining Equations 2–5, we have that

m + n = 1
2
(k′ + r + 2),

5m + 6n = 4 + 2k′ + 3r.
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From the above expressions, we obtain

m = k′ + 2.

So f ′ = m + n � m = k′ + 2; that is, there are at least k′ + 2 faces of G in the
interior of C ′. But because of the 3-regularity and the 3-connectivity of G, from
each of these k′ additional vertices on C ′ there is exactly one edge towards the
interior of C ′. So in the interior of C ′ there must exist at least one face F of G
such that the boundary of F is disjoint with C ′. Hence, the set, denoted by E ′,
of edges emitted from the k′ additional vertices on C ′ towards the interior of C ′
is a cyclical edge cut of G with size k′ the deletion of which separates G into two
components, one of them, denoted by G∗, containing the face F and the other
of them containing C ′.

Then |E ′| = k′ � 4 since cλ(G) � 4. Applying the same reason on C ′′, we
also have that k′′ � 4. Then from the above claim that k′ + k′′ � 8, we have that
k′ = k′′ = 4. So the size of the cyclical edge cut E ′ is 4. But now the component
G∗ of G − E ′ has fewer vertices than G ′, contradicting our choice that G ′ has
the minimum number of vertices. Hence cλ(G) = 5.

By using the cyclical 5-edge-connectivity of fullerene graphs, we now deter-
mine their cyclical connectivity. A graph G is cyclically k-connected [10] if when-
ever we can express G as G = G1 ∪ G2, where E(G1) ∩ E(G2) = ∅ and G1
and G2 both contain cycles, we must have |V (G1) ∩ V (G2)| � k. The maximum
integer k (if exist) such that G is cyclically k-connected is said to be the cyclical
connectivity of G, denoted by cκ(G).

For every fullerene graph G, cκ(G) � 5. In fact, let us take a pentagon in
G as G1 and take G2 = G − E(G1). Clearly, both G1 and G2 contain cycles,
G = G1 ∪ G2, E(G1) ∩ E(G2) = ∅ and |V (G1) ∩ V (G2)| = 5.

Theorem 5. Let G be a fullerene graph. Then cκ(G) = 5.

Proof. Because cκ(G) � 5, it needs only to prove that equality holds. Suppose,
to the contrary, that cκ(G) < 5. Then there would exist a pair of subgraphs G1
and G2 of G such that G1 and G2 both contain cycles, G = G1∪G2 and E(G1)∩
E(G2) = ∅, but |V (G1) ∩ V (G2)| � 4. Among all of such pairs of subgraphs of
G, we select a pair of G1 and G2 such that X := V (G1) ∩ V (G2) has as few
vertices as possible. Obviously, |X | � 3 since G is 3-connected.

Since G is 3-regular and E(G1) ∩ E(G2) = ∅, every vertex v ∈ X is inci-
dent with two edges in one of G1 and G2, and one edge (a pendant edge) in the
other one. Otherwise, v would be an isolated vertex of G1 or G2, say G1. Let
G ′

1 = G1 −v. Then G = G ′
1 ∪ G2, E(G ′

1)∩ E(G2) = ∅ and G ′
1 and G2 both con-

tain cycles, but |V (G ′
1)∩V (G2)| < |X |, contradicting the selection of G1 and G2.

Now let E0 consist of such pendant edges of G1 or G2 each of which is incident
with a vertex of X . Then |E0| � |X | � 4 and the deletion of E0 does not destroy
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the cycles in G1 and G2. On the other hand, let V ′
1 = V (G1)\{v ∈ X |dG2(v) = 2}

and V ′
2 = V (G2)\{v ∈ X |dG1(v) = 2}. Then V (G) = V ′

1 ∪ V ′
2 and V ′

1 ∩ V ′
2 = ∅.

Further, it can be seen that every edge between V ′
1 and V ′

2 must belong to E0.
In fact, given any edge e with one endpoint v1 in V ′

1 and the other one v2 in
V ′

2. Without lose of generality, suppose that e ∈ E(G1). Then dG1(v2) = 1 and
v2 ∈ X , that is, e is a pendant edge of G1 with an endpoint in X . So by the
definition of E0, e belongs to E0. Hence, E0 is an edge cut of G. So there must
exist a subset E ′

0 of E0 such that E ′
0 is a cyclical edge cut of G with size at most

4. This contradicts the result that cλ(G) = 5, and the proof is thus finished.

Došlić in [3] ever gave an alternative definition on cyclical connectivity: a
graph G is cyclically k-connected if it cannot be separated into components of
which at least two have cycles, by removing fewer than k vertices. The greatest
integer k (if exist) such that G is cyclically k-connected is called Došlić’s cyclical
connectivity of G, denoted by cκ ′(G).

Došlić showed that cκ ′(G) � 4 for every fullerene graph G (See Corol-
lary 13 [3]). For a general graph G, here we give a relation between cκ(G) and
cκ ′(G).

Theorem 6. cκ(G) � cκ ′(G).

Proof. If there is no subset of V (G) the deletion of which separates G into
components of which at least two have cycles, it is trivial; Otherwise, let us
choose a subset X of V (G) with size cκ ′(G) such that G−X is not connected and
at least two components of G − X , say G ′ and G ′′, respectively, contain cycles.
Let G1 := G[V (G ′) ∪ X ] and G2 := G[V \V (G ′)] − E(G[X ]). Then we have
that G = G1 ∪ G2, E(G1) ∩ E(G2) = ∅, both of G1 and G2 have cycles and
V (G1) ∩ V (G2) = X . So cκ(G) � |X |, i.e., cκ(G) � cκ ′(G).

Equation in theorem 6 does not necessarily hold. For example, in figure 3
the graph G is the union of the graph G1 and G2, where V (G1)∩V (G2) = {x, y}.
It is seen that cκ(G) = 2. But there is no any subset of V (G) whose removal
from G can separate G into components of which at least two have cycles.

For fullerene graphs, however, we have

Corollary 7. For every fullerene graph G, cκ(G) = cκ ′(G) = 5.

Proof. By theorems 5 and 6, it is sufficient to show that cκ ′(G) � 5. Take a
pentagon H in G and let X be the subset of V (G) consisting of the five vertices
of G − V (H) each of which is adjacent with a vertex on H . Then the subgraph
G − X of G has two components H and G − X ∪ V (H), both of them containing
cycles. So cκ ′(G) � |X | = 5.
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Figure 3. Graph G with two subgraphs G1 and G2.
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