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A fullerene graph is a 3-regular (cubic) and 3-connected spherical graph that has
exactly 12 pentagonal faces and other hexagonal faces. The cyclical edge-connectivity
of a graph G is the maximum integer k such that G cannot be separated into two com-
ponents, each containing a cycle, by deletion of fewer than k edges. Dosli¢ proved that
the cyclical edge-connectivity of every fullerene graph is equal to 5. By using Euler’s for-
mula, we give a simplified proof, mending a small oversight in Dosli¢’s proof. Further,
it is proved that the cyclical connectivity of every fullerene graph is also equal to 5.
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1. Introduction

A fullerene graph, the molecular graph of a spherical carbon cluster, is a
3-regular (cubic) and 3-connected plane graph (or spherical map) that has
exactly 12 faces of size 5 and other faces of size 6. In a series of articles [2-5, 12],
it has been shown that fullerene graphs have certain structural properties related
to matching theory, such as bicriticality, 2-extendability, etc.

A graph G is said to be bicritical if G —u — v has a perfect matching for
every pair of distinct vertices u and v. A connected graph G with at least 2k +2
vertices is said to be k-extendable if it contains a matching of size k and every
such matching is contained in a perfect matching. A graph G is cyclically k-edge
connected if at least k edges must be removed to disconnect G into two com-
ponents that each contains a cycle. The cyclical edge-connectivity of G, denoted
by ¢A(G), is the maximum integer k such that G is cyclically k-edge connected
[6, 7]. There is a relation between bicriticality and the cyclic edge-connectivity as
follows (See Ex. 5.5.21 in [9]).
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Propositon 1. For a k-regular non-bipartite graph G (k > 3), if G is cyclically
(k + 1)-edge connected and has even number of vertices, then G is bicritical.

From proposition 1, Dosli¢ [2] showed that all fullerene graphs are bicritical by
giving the following lower bound on cyclical edge-connectivity of fullerene graphs:

Theorem 2. [2]. Let G be a fullerene graph. Then cA(G) > 4.

From this result, the 2-extendability of all fullerene graphs was discovered
by Zhang and Zhang [12] based on the result of Ref. 8: If G is a 3-connected
cubic planar graph which is cyclically 4-edge connected and has no face of size
4, then G is 2-extendable.

Furthermore, combining Sashs’ result that the cyclical edge-connectivity of
every 2-edge connected cubic graph is no more than 5 [11], it was obtained that
for every fullerene graph G, cA(G) < 5.

Later, Dosli¢ [5] determined the value of cA for all fullerene graphs, solving
the problem proposed by Zhang and Zhang in [12]:

Theorem 3. [5]. Let G be a fullerene graph. Then cA(G) = 5.

In Dosli¢’s proof of this theorem seven cases were enumerated in figure 5
in [5]. But two additional cases that may happen were not listed (See figure 1).

In this note we avoid such an enumeration and give a simplified proof to
theorem 3 by mainly applying Euler’s formula. For a graph G, we denote the
vertex set and edge set of G by V(G) and E(G), respectively. For any V' C
V(G) and E’ C E(G), the induced subgraphs by V' and by E’ are denoted by
G[V'] and G[E'], respectively. For the sake of convenience, we call an edge cut
of a connected graph G cyclical edge cut if the deletion of it separates G into
two components, each containing a cycle. The other terminology and notation in
graph theory used but unexplained in this note are standard and can be found
in [1, 9].

First we give the following lemma as a preparation for our proof to
theorem 3.

Lemma 4. Let G be a 3-regular, 3-connected plane graph with cA(G) = k. Then
for every cyclical edge cut Eg = {ey, e3, ..., ek}, there exist two cycles C’ and C”
on distinct components of G — Ej, respectively, such that every edge ¢; of Ej has
one endpoint on C" and the other one on C”. Furthermore, Ey is a matching of
G.

Proof. Let Eg = {e1,en,...,er} be a cyclical edge cut of G. Then Ej sepa-
rates G into two components G’ and G” that each contains a cycle, denoted by
Cy and C», respectively. We may suppose that the outer face of G is exactly the
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Figure 1. Two possible cases unconsidered in [5].

outer face of G”. Thus G’ must lie in some inner face Fy of G”. We denote the
boundaries of Fy and the outer face of G’ by C” and C’, respectively.

We assert that G’ and G” are both 2-connected. If G’ is not 2-connected,
then there is a cut vertex v of G'. Since dg/(v) < 3, there must exist a cut edge
e of G’ incident with v. Let us denote the two components of G’ —e by G| and
G, respectively. Then the cycle C; must be contained in G| or in G/, say G}. On
the other hand, there must be at least two edges of E( such that each of them
has one endpoint in G’. Otherwise we would choose fewer than three vertices the
deletion of which separates G into at least two components, contradicting the 3-
connectivity of G. So the number of edges of Ey with one endpoint in G is at
most k — 2. Thus these edges together with e form an edge cut Ej with size of
at most k — 1 the deletion of which separates G into two components, G| and
G — G|, where G/ contains C; and G — G contains C,. Hence, E| is a cyclical
edge cut of G and cA(G) < k—1, a contradiction. So G’ is 2-connected. Similarly
it can be shown that G” is 2-connected.

Since every face of a 2-connected plane graph is bounded by a cycle
(cf. proposition 4.2.5 in [1]), both C’ and C” are cycles. Then by the planarity
of G every e; of Ey has one endpoint on C’ and the other on C”. Since G is
3-regular, each pair of edges of Ejp have no endpoints in common. m]

Proof of theorem 3. Since 4 < cA(G) <5, it is sufficient to prove that cA(G) # 4.
Suppose, to the contrary, that cA(G) = 4. Among all cyclical edge cuts of G with
size 4, we choose one, denoted by Eg := {eq, €2, €3, €4}, such that one of the two
components of G — E, say G’, has the minimum number of vertices. The other
component of G — Ej is denoted by G”. Then by lemma 4 there exist two cycles
C’ and C” on G" and G”, respectively, such that every edge ¢; (i = 1,2, 3,4) has
one endpoint v, on C" and the other endpoint v/ on C”, and Ej is a matching
of G. From the proof of lemma 4 we can suppose that G’ lies in the interior of
C” (See figure 2).

Let us denote the numbers of the additional vertices on C’ and C” by k’
and k”, respectively. Then we have that ¥ > 1 and k” > 1 since G has no
quadrilateral faces.
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Figure 2. The cycles C’ and C” and the edges connecting them.

Claim. £’ + k" < 8.

In fact, if there are more than eight additional vertices on C’ and C”, then
there would be at least three additional vertices on one of the boundaries of the
four faces of G between C’ and C”, resulting in such a face with size more than
6, a contradiction.

Now let us consider the subgraph G’ and denote by V', ¢’ and f’ the num-
bers of vertices, edges and interior faces of G’, respectively. Further let r be the
number of vertices in the interior of C’. Then we have

vV =k +r+4 (1)
and
8+ 3k +3
e = u 2)
2
Substituting Equations (1) and (2) into Euler’s formula v/ — ¢’ + f/ = 1, we have
K’ 2
f/:e/—v/+1=—+;+ . (3)

Let m and n denote the numbers of pentagons and the hexagons in the inte-
rior of C’, respectively. Then we have

ff=m+n )
and
, _ Sm+6bn+k +4
= 5 .
Combining Equations 2-5, we have that

)

€

1
m+n=§(k/+r+2),
5m+6n =4+ 2k + 3r.
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From the above expressions, we obtain
m=k+2.

So f'=m+n > m =k’ + 2; that is, there are at least k' + 2 faces of G in the
interior of C’. But because of the 3-regularity and the 3-connectivity of G, from
each of these k' additional vertices on C’ there is exactly one edge towards the
interior of C’. So in the interior of C’ there must exist at least one face F of G
such that the boundary of F is disjoint with C’. Hence, the set, denoted by E’,
of edges emitted from the k&’ additional vertices on C’ towards the interior of C’
is a cyclical edge cut of G with size k' the deletion of which separates G into two
components, one of them, denoted by G*, containing the face F and the other
of them containing C’.

Then |E’| = k' > 4 since cA(G) > 4. Applying the same reason on C”, we
also have that k” > 4. Then from the above claim that ¥’ + k" < 8, we have that
k' = k" = 4. So the size of the cyclical edge cut E’ is 4. But now the component
G* of G — E’ has fewer vertices than G’, contradicting our choice that G’ has
the minimum number of vertices. Hence cA(G) = 5. O

By using the cyclical 5-edge-connectivity of fullerene graphs, we now deter-
mine their cyclical connectivity. A graph G is cyclically k-connected [10] if when-
ever we can express G as G = G| U Gy, where E(G1) N E(Gy) = @ and G
and G, both contain cycles, we must have |V(G1) N V(G>)| > k. The maximum
integer k (if exist) such that G is cyclically k-connected is said to be the cyclical
connectivity of G, denoted by cx(G).

For every fullerene graph G, cx(G) < 5. In fact, let us take a pentagon in
G as G and take G, = G — E(G)). Clearly, both G| and G, contain cycles,
G=G, UGy, E(G))NE(Gy) =@ and |V(G) N V(Gy)| = 5.

Theorem 5. Let G be a fullerene graph. Then c«(G) = 5.

Proof. Because ck(G) < 5, it needs only to prove that equality holds. Suppose,
to the contrary, that ck(G) < 5. Then there would exist a pair of subgraphs G
and G, of G such that G| and G, both contain cycles, G = G1UG> and E(G1)N
E(Gy) = @, but |V(G1) N V(Gy)| < 4. Among all of such pairs of subgraphs of
G, we select a pair of G; and G> such that X := V(G1) N V(G»,) has as few
vertices as possible. Obviously, |X| > 3 since G is 3-connected.

Since G is 3-regular and E(G) N E(Gy) = &, every vertex v € X is inci-
dent with two edges in one of G| and G, and one edge (a pendant edge) in the
other one. Otherwise, v would be an isolated vertex of G or G», say G. Let
G| = Gi—v. Then G = G{UG», E(G))NE(G>) = @ and G| and G; both con-
tain cycles, but |V(G))NV(Gy)| < |X|, contradicting the selection of G| and G».
Now let Ej consist of such pendant edges of G| or G, each of which is incident
with a vertex of X. Then |Ey| < |X| < 4 and the deletion of Ey does not destroy
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the cycles in G| and G». On the other hand, let V] = V(G )\{v € X|dg,(v) = 2}
and V; = V(G)\{v € Xl|dg,(v) = 2}. Then V(G) = V{UV, and V| NV, = @.
Further, it can be seen that every edge between V| and V; must belong to Ej.
In fact, given any edge e with one endpoint v in V| and the other one v, in
Vz’. Without lose of generality, suppose that e € E(Gy). Then dg,(v2) = 1 and
vy € X, that is, e is a pendant edge of G| with an endpoint in X. So by the
definition of Ej, e belongs to Ey. Hence, Ej is an edge cut of G. So there must
exist a subset E, of Eq such that E is a cyclical edge cut of G with size at most
4. This contradicts the result that ¢cA(G) = 5, and the proof is thus finished. o

Dosli¢ in [3] ever gave an alternative definition on cyclical connectivity: a
graph G 1is cyclically k-connected if it cannot be separated into components of
which at least two have cycles, by removing fewer than k vertices. The greatest
integer k (if exist) such that G is cyclically k-connected is called Dosli¢’s cyclical
connectivity of G, denoted by ck’(G).

Dosli¢ showed that ck’'(G) > 4 for every fullerene graph G (See Corol-
lary 13 [3]). For a general graph G, here we give a relation between c«(G) and
ck'(G).

Theorem 6. cx(G) < ck’(G).

Proof. 1f there is no subset of V(G) the deletion of which separates G into
components of which at least two have cycles, it is trivial; Otherwise, let us
choose a subset X of V(G) with size ck’(G) such that G—X is not connected and
at least two components of G — X, say G’ and G”, respectively, contain cycles.
Let G| := G[V(G) U X] and G, := G[V\V(G)] — E(G[X]). Then we have
that G = G{ U Gy, E(G1) N E(G,) = @, both of G; and G, have cycles and
V(G1) NV (Gy) = X. So ck(G) < |X], i.e., ck(G) < ek’ (G). 0

Equation in theorem 6 does not necessarily hold. For example, in figure 3
the graph G is the union of the graph G| and G», where V(G1)NV(G») = {x, y}.
It is seen that c«(G) = 2. But there is no any subset of V(G) whose removal
from G can separate G into components of which at least two have cycles.

For fullerene graphs, however, we have

Corollary 7. For every fullerene graph G, ck(G) = ck'(G) = 5.

Proof. By theorems 5 and 6, it is sufficient to show that ck’(G) < 5. Take a
pentagon H in G and let X be the subset of V(G) consisting of the five vertices
of G — V(H) each of which is adjacent with a vertex on H. Then the subgraph
G — X of G has two components H and G — XUV (H), both of them containing
cycles. So ¢k’(G) < |X| =5. m]
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Figure 3. Graph G with two subgraphs G| and G».
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